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Abstract. Synthetic theory of Ricci curvature bounds is reviewed, from the con-
ditions which led to its birth, up to some of its latest developments.

Introduction

This is the story of a mathematical theory which was born from the encounter of
several fields. Those fields were: Riemannian geometry, gradient flows, information,
and optimal transport; and their encounter took place about 15 years ago. A major
result of the interaction was the synthetic theory of Ricci curvature bounds, which
was formalized around 2005 and now seems to be reaching maturity, after ten years
of fast, sustained growth. As the theory is still in rapid evolution, it is often difficult,
even for experts, to trace its progress accurately.

In this short survey, intended to serve as written source for my Takagi lectures in
June 2015, I shall

- comment on the meaning of “synthetic”;
- review in haste the four fields involved;
- summarize the way in which the interaction takes place;
- describe the fundamentals of the theory;
- review the connections to a few other geometric theories;
- discuss possible future directions of development;
- list a few selected references, many of them landmarks in the field.

Throughout the document, I shall insist on the global picture, at the expense of
technical details.

It is a pleasure to thank three close collaborators whose help was immeasurable
during the years in which I actively worked on the subject: Felix Otto, John Lott,
and Luigi Ambrosio. To this short list I will add Yann Brenier and Wilfrid Gangbo,
for giving me opportunities to jump in the field; Luis Caffarelli and Craig Evans, for
their early support; Michel Ledoux and Eric Carlen, for the enormous influence which
they had on me; Robert McCann, for his pioneering role; Karl-Theodor Sturm, for
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his huge impact on the theory and his constant help; and the beautiful international
small crowd of bright young mathematicians who have been enriching the subject at
a fast pace, and more than once resolved problems which seemed unsurmountable.
Final thanks are due to the organizers of the Takagi lectures, for the honor and
pleasure brought upon me by this invitation. A preliminary version of this set of
notes was written for the Chern Lectures in the Mathematical Center of Tsinghua
University, January 2015; it was also the basis of my contribution to the ceremony
of the 50th aniversary of the FIM in ETH Zürich, June 2015.

1. Synthetic point of view

As in my book [53] I will use the well-known notion of convexity to illustrate the
concept of “synthetic” point of view, and compare it with the concept of “analytic”
point of view.

If Ω is a convex open set in Rn there are two natural ways to define the notion of
convexity for a function ϕ : Ω→ R:

(a) ∀x ∈ Ω, ∇2ϕ(x) ≥ 0, where ∇2ϕ is the Hessian matrix of ϕ;

(b) ∀x, y ∈ Ω, ∀t ∈ [0, 1], ϕ((1− t)x+ ty) ≤ (1− t)ϕ(x) + tϕ(y).

Definition (a) is local and effective: it can often be checked in practice with
reasonable effort; it also comes with an auxiliary quantity, the Hessian of ϕ, which
can be used to refine and quantify the notion of convexity. This is the analytic
definition, based on a computation. It stands in contrast to Definition (b) which is
less precise and almost impossible to check directly.

In spite of its shortcomings, Definition (b) also has enormous advantages. First,
it is more general: no need for the Hessian to be well defined, the definition also
makes sense for nonsmooth convex functions such as ϕ : x 7−→ |x|. It is also very
useful, as the starting point for so many convexity inequalities and results. It is
the synthetic definition, relying on qualitative properties (in this case, a geometric
property of the graph) rather than computations.

In fact, it is the combination of formulations (a) and (b) which turns out to be so
fruitful: an important part of our convexity games involves Definition (a) to establish
convexity, and Definition (b) to use it.

Then of course, it is crucial that both formulations be equivalent: such is the case
when ϕ is, say, C2. And, as said earlier, when that is not the case, we still can use
formulation (b).

Actually, more is true: if (b) holds, then automatically ϕ enjoys some regularity
and some version of (a) holds true. This is the content of Alexandrov’s regularity
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theorem: if ϕ : Ω → R is convex (in sense (b)), then ϕ is twice almost everywhere
differentiable, so ∇2ϕ exists almost everywhere, and it is nonnegative wherever it is
defined.

In Euclidean geometry there is also such a distinction between analytic geometry
(based on equations on coordinates – linear equations for lines, quaratic equations for
paraboles, circles, ellipses, etc.) and synthetic geometry (in the ancient Greek style,
with properties of circles, parallel lines, etc.) Both have their rewards, the analytic
approach being often more effective and the synthetic one more economical, more
to the point, and, well, more synthetic.

2. The forces in presence

The four theories which follow are all well-established and respectable; and, for a
long time, roughly up to the mid-nineties, they lived happily without any connection
— except, arguably, for some links between curvature and gradient flow, for instance
in positively curved Alexandrov spaces or the theory of Ricci flow.

2.1. Curvature theory. Curvature is the basis of non-Euclidean geometry. First
introduced by Gauss and further developed by his student Riemann, curvature mea-
sures the degree of non-Euclidean behavior in geodesics. It comes in several variants.

2.1.1. Sectional curvature. Sectional curvature is the simplest and most fundamental
notion of curvature. If x is a point in a Riemannian manifold and u, v are two
unit orthogonal tangent vectors at x, then the sectional curvature κ = κ(u, v) may
be defined as the dominant non-Euclidean correction to the distance between the
geodesics γu(t) = expx(tu) and γv(t) = expx(tv) (which have constant speed and
emanate from x with velocities u and v respectively):

d
(
γu(t), γv(t)

)
=
√

2 t
(

1− κ

12
t2 +O(t3)

)
as t→ 0. (1)

Notice the negative sign in front of κ: positive curvature means reduced distances.
It can be shown that κ actually depends only on the tangent plane, the section
generated by u and v.

The form of inequality (1) makes it clear that κ is invariant by isometry. Spaces
of constant sectional curvatures κ are classified: locally they are Euclidean spaces
(κ = 0), n-dimensional spheres (κ > 0), and hyperbolic spaces (κ < 0).
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2.1.2. Synthetic sectional curvature. A sectional curvature bound may also be in-
troduced in a synthetic way, by comparison to geometric properties in a space of
constant curvature. For instance, one may define nonnegative sectional curvature
by the property that all (sufficiently small) geodesic triangles have the sum of their
angles at least equal to π: with obvious notation,

∑
αi ≥ π. Equivalently, one may

define nonnegative sectional curvature by the property that for any triangle abc, if
m is the midpoint of (bc) and a0b0c0 is an isometric triangle drawn on R2, and m0 is
the midpoint of (b0c0), then d(a,m) ≥ d(a0,m0); in short, triangles in positive cur-
vature have longer medians. At first presentation it looks plausible that such a basic
property can be used to significantly translate curvature properties into geometric
statements; such is indeed the case [7].

2.1.3. Ricci curvature. When dealing with surfaces, sectional curvature, then called
Gauss curvature, is all that one has to know. In dimension n ≥ 3, further notions
of curvature must be defined, and more care is needed.

The Ricci curvature is famous, among others, for its use in general relativity and in
Ricci flow. This tensor is defined as follows: if u = e1 is a unit vector, then introduce
(e2, . . . , en) in such a way that (e1, . . . , en) is an orthonormal basis of TxM , and let

Ric (u) :=
n∑
j=2

κ(e1, ej). (2)

Not only does this turn out to be independent of the choice of (e2, . . . , en), but it
is also a quadratic form in u. This is the Ricci curvature: it tells about volume
distortion rather than distance distortion.

There is a formula which captures very well the infinitesimal meaning of Ricci
curvature: if ξ is a vector field, and J (t) := det(dx expx(tξ)), then

d2

dt2
(J 1/n) +

Ric (γ̇, γ̇)

n
(J 1/n) ≤ 0. (3)

Here γ̇(t) = expx(tξ) is the geodesic starting from x with velocity ξ(x). This tells
us about the infinitesimal rate of change of volume along the flow generated by ξ.
As usual in fluid mechanics, there is also an equivalent Eulerian formulation:

ξ · ∇(∇ · ξ)−∆
|ξ|2

2
+

(∇ · ξ)2

n
+ Ric (ξ, ξ) ≤ 0. (4)

Usually the latter formula is stated for ξ = ∇ψ, in the form

−∇ψ · ∇∆ψ + ∆
|∇ψ|2

2
≥ (∆ψ)2

n
+ Ric (∇ψ,∇ψ). (5)
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Comparison of (1) on the one hand, (3) or (4) on the other hand, shows several
important differences in principle:
• While (1) is about distances, inequality (3) on the contrary is in terms of Ja-

cobian determinant, which means volume. This explains why Ricci curvature is the
favorite curvature of probabilists. At the same time, probability theory will very
often involve changes of measures; to keep the distortion interpretation, one will
need to twist the definition of Ricci curvature.
• Dimension appears in (3), and in fact curvature and dimension are woven to-

gether in this inequality; while dimension played no role in sectional curvature.
• Formula (3) is an inequality, while (1) was an equality. The inequality is un-

avoidable, because at some place in the derivation a Cauchy–Schwarz inequality is
used, in the form ‖∇ξ‖2 ≥ (∇ · ξ)2/n. In fact there is the neat Bochner identity,

−∇ψ · ∇∆ψ + ∆
|∇ψ|2

2
= ‖∇2ψ‖2 + Ric (∇ψ,∇ψ); (6)

but it is not easy to use, for instance because ∇2ψ does not have any simple relevant
interpretation, while ∆ψ does have one, as the divergence of the vector field ∇ψ.

Inequality (5) can be seen as a property of the Laplace operator, noting that
|∇ψ|2 = (∆ψ2 − 2ψ∆ψ)/2. Conversely, one may replace ∆ by a diffusion-drift
operator, say L = ∆ − ∇V · ∇; in a measure-theoretical view, this amounts to
replace the uniform volume measure by the Boltzmann-type measure e−V vol , which
is the equilibrium measure for L. Then it makes sense to define the CD(K,N)
criterion for the linear diffusion operator L:

−∇ψ · ∇Lψ + L
|∇ψ|2

2
≥ (Lψ)2

N
+K|∇ψ|2. (7)

Morally, this means that the Ricci curvature is bounded below by K and the dimen-
sion is bounded above by N ; here K might be any real number, while N might be
any positive number (in practice N ≥ 1). As a typical example, the Gaussian space
(Rn, γ), where γ is the standard (unit covariance matrix) Gaussian distribution, can
be considered as a CD(1,∞) space, independently of the dimension: this property
plays a crucial role in the interplay between statistics and geometry, and is consistent
with the well-known fact that a Gaussian distribution is like the infinite-dimensional
counterpart of the uniform measure on the sphere. The corresponding CD(K,∞)
criterion correspond to

d2

dt2
(logJ ) +K(logJ ) ≤ 0. (8)
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and

−∇ψ · ∇Lψ + L
|∇ψ|2

2
≥ K|∇ψ|2. (9)

Inequalities (7) and (9), or their Lagrangian counterparts, are the working heart
of Ricci curvature analysis. They are used in countless applications: measure growth
control, isoperimetric inequalities, spectral gap estimates, heat kernel bounds, mea-
sure concentration theory, control of stochastic processes, etc.

A relatively recent but emblematic such estimate is the curved Brunn–Minkowski
inequality: if X and Y are two compact sets in a manifold M with nonnegative Ricci
curvature, and M is the set of midpoints of X and Y , then

vol [M ]1/n ≥ 1

2

(
vol [X]1/n + vol [Y ]1/n

)
. (10)

This captures the idea that in positive curvature, intermediate points form a large set
(this is in accordance with the fact that the flow has a tendency to reduce distances:
to get the target right, one has to start by enlarging the volume more than one would
expect). Note the formal relation with (3): the same exponent 1/n, and a convexity
inequality, expressed for the infinitesimal volume there, and for the integral volume
here. Further note that when the manifold is Rn, then (10) reduces to the classical
“algebraic” Brunn–Minkowski inequality:∣∣∣∣X + Y

2

∣∣∣∣1/n ≥ 1

2

(
|X|1/n + |Y |1/n

)
.

2.1.4. Scalar curvature. S = tr (Ric ) is the scalar curvature, much more tricky to
interpret. It does play a fundamental role in a number of problems in analysis. I
shall say nothing about it here, and refer to the survey [26] and the treatises [16, 20]
for an overview of the theory of curvature.

2.2. Nonsmooth gradient flows. A gradient flow is defined by two ingredients:
a geometry and a function, which may be called “energy” even though its physical
meaning may be very different. Typically the geometry is provided by a Riemannian
manifold M and the energy is a function E : M → R. The Riemannian structure
transforms the differential of U into a vector field, called the gradient vector field;
then the gradient flow is defined by the ordinary differential equation

Ẋ = − grad E(X). (11)

Gradient flows appear in a number of contexts and are associated with all kinds
of dissipative phenomena. In various respects they are the dissipative counterpart of
Hamiltonian flows in the conservative world. They are very popular in optimization,



SYNTHETIC THEORY OF RICCI CURVATURE BOUNDS 7

as a way to search for the minimum of E ; for instance they are a key tool in modern
artificial intelligence theory.

Gradient flows can be defined in finite or infinite dimension. For instance, the
heat equation is the gradient flow of the Dirichlet energy

E(u) =
1

2

∫
|∇u|2

in the L2 (Hilbert) geometry.
The need for gradient flows in a nonsmooth context arose long ago. De Giorgi de-

veloped it with applications to image processing in mind. In the absence of smooth-
ness, the gradient of E may be ill-defined, but this can be often compensated by
convexity or semiconvexity properties: as a general rule, the gradient flow of a
convex functional is well-defined, nonexpanding, and so on. To define and study
nonsmooth gradient flows, two main strategies emerged.

2.2.1. Time discretization: Generalized minimizing movements. This formalism was
a favorite of the Italian school, starting with De Giorgi. Choose a time step in
the form of a small number τ > 0. Starting from an initial condition X0, define

X
(τ)
0 = X0 and for each k ∈ N

X
(τ)
k := argmin

X

[
E(X) +

d(X
(τ)
k−1, X)2

2τ

]
. (12)

Then as τ → 0 and kτ → t, show that, extracting a subsequence if necessary,

X
(τ)
k ' Y (kτ) ' Y (t);

the limit Y is a generalized gradient flow.

There is nothing mysterious in equation (12): if X
(τ)
k ' X

(τ)
k−1, and the geometry

is infinitesimally Hilbert, the approximate Euler–Lagrange equation should be

grad E(X
(τ)
k ) +

(
X

(τ)
k −X

(τ)
k−1

τ

)
= 0,

which is a discrete formulation of (11).
Of course if E is lower semicontinuous, then the minimization problem in (12) has a

solution. The program can be carried out under various semi-continuity assumptions
for E and | grad E|; see [3]. One can prove typically the 1/2-Hölder regularity of Y (t)
in the time variable t, the finiteness of E(t) for any t > 0, etc.
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2.2.2. Evolution Variational Inequalities. The other approach goes back to Bénilan
and others: it relies on the variations of geodesics. If Z is a point in the phase
space, then one may differentiate the distance of Z to the curve X(t): whenever
that differential is well-defined,

d

dt

(
d(Z,X(t))2

2

)
=

〈
dX

dt
,
dγ

ds

〉∣∣∣∣
s=1

, (13)

where γ is a minimizing geodesic joining γ(0) = Z to γ(1) = X(t). If X(t) evolves
according to (11), then the right-hand side in (13) coincides with −(d/ds)E(γ(s)).
So the idea is to compare (d/dt)d(Z,X(t))2/2 with −(d/ds)E(γ(s)). These are rates
of variation along different time evolutions. This may be simplified by using a
convexity assumption: indeed, for instance, if E is convex, then

d

ds

∣∣∣∣
s=1

E(γ(s)) ≥ E(γ(1))− E(γ(0)) = E(X(t))− E(Z).

Further, even if the distance function is not differentiable, it can always be upper
differentiated. Then the evolution inequality becomes

∀Z, d+

dt

(
d(Z,X(t))2

2

)
≥ E(X(t))− E(Z). (14)

This is in case E is convex; there are similar formulations for semiconvex functionals
E . Many variants have been explored; once again I shall refer to [3] for a complete
overview.

2.3. Information theory. Information theory was born formally in the fifties,
through the efforts of Shannon to quantify the flux of information in a language, or
signal. To this aim certain key quantities were introduced; the most famous is the
entropy

Sν(µ) = −
∫
ρ log ρ dν, ρ =

dµ

dν
. (15)

Often one works with the information Hν(µ) = −Sν(µ), which is convex (and unfor-
tunately called “entropy” by many mathematicians). The logarithmic form imposed
itself to Shannon from two basic principles:
• the typical “informational value” of an elementary signal should be a function

of its frequency ρ (rare is valuable, so the elementary information should be an
increasing function of 1/ρ)
• independent signal sources should add up their informations.
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Since independence is associated with mutiplication of probabilities, going from
multiplication to addition was done through the logarithmic function; then the inte-
gration of log(1/ρ) gave rise to −

∫
ρ log ρ. Simple as it was, this procedure had led

Shannon to recover Boltzmann’s celebrated formula, which is associated with a rich
history and many important theorems in statistics. In its most general formulation,
Boltzmann’s formula can be summarized by Sanov’s theorem:

P
[

1

N

∑
δXi ' µ

]
' e−NHν(µ), (16)

where the Xi are independent random variables distributed according to the law ν.
The rate of entropy variation along the heat equation is another cornerstone of

information theory:
d

dt
Hν(µt) = −Iν(µt), (17)

where (µt) solves the diffusion equation ∂tµt = Lµt, Lµ = ∆µ + ∇ · (µ∇V ), ν =
e−V vol , and Iν is the Fisher information:

Iν(µ) =

∫
|∇ρ|2

ρ
dν, ρ =

dµ

dν
. (18)

This functional is also a key object in statistics, appearing for instance as the as-
ymptotic covariance matrix of the maximum likelihood estimate. For more on the
subject I shall refer to the classical book by Cover and Thomas [15].

All kinds of variants exist, in the form of functionals of the type

Uν(µ) =

∫
U

(
dµ

dν

)
dν, (19)

where U is a nonlinearity. Typically one assumes U(0) = 0, and U convex; there are
some physical and mathematical reasons for that. The resulting functionals have
variable informational content and come up in a huge number of modelling issues,
for instance as energy-type functionals associated with nonlinear diffusion equations.

2.4. One ring to bring them all and bind them. The theory which will act
as a link between gradient flows, information theory and geometry is the theory of
optimal transport.

2.4.1. Introduction. Optimal transport theory is one of the most versatile theories
developed in analysis over the past decades. Of the four theories which are reviewed
here, it is arguably the oldest and the most changing. It takes its roots in two
founding papers:
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• the 1781 memoir by Monge asking about the most economical way to transport
a distribution of mass from a given state to a prescribed one;

• the 1942 paper by Kantorovich investigating the same problem in a probabilistic
formulation, with computability and optimization in mind.

Both Monge and Kantorovich were outstanding scientists whose careers were lying
at the intersection of science and public policy. The life of Monge was somewhat
romanticized by E.T. Bell in his classics, Men of Mathematics; while Kantorovich is
one of the heroes in the unclassifiable modern novel Red Plenty by Francis Spufford.

The basic data in optimal transport consists of a cost function c in two variables,
and two probability measures, say µ0 and µ1, defined on a source space X0 and a
target space X1 respectively. Then one defines

• the Monge variational problem,

inf
T

{∫
c(x, T (x))µ0(dx); T#µ0 = µ1

}
. (20)

Recall that T#µ[A] = µ[T−1(A)] defines the image measure of µ by T , which is also
an abstract way to introduce a change of variables. Here T is called the transport
map. Problem (20) is a highly nonlinear, nonconvex minimization problem, first
because c is nonlinear and in general nonconvex, but also because of the complicated
constraint on T , which in a Euclidean context may involve the Jacobian determinant
det(dT ).

• the Kantorovich variational problem,

inf
π

{∫∫
c(x, y) π(dx dy); π ∈ Π(µ0, µ1)

}
. (21)

Here Π(µ0, µ1) is the set of joint probability measures having marginals µ0 and µ1

respectively, and π is called a transport plan. The ansatz π = (Id , T )#µ0 reduces
(21) to (20); thus the Kantorovich problem can be seen as a relaxed version of
the Monge problem, even though it was in fact introduced independently. In the
Kantorovich problem, the infimum is achieved under minimal assumptions, while
more stringent conditions are required for the existence of a minimizer in the Monge
problem.

Both the Monge and the Kantorovich problem are expressions of the same prob-
lem: how to rearrange a given distribution of mass µ0, defined on X0, into another
distribution of mass µ1, defined on X1. Under very general assumptions (say if µ0
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has no atoms and c is continuous), the values of the optimum in (20) and (21) co-
incide; this common value is called the optimal transport cost. It is often the case
that X0 = X1, but this might not always be.

2.4.2. Duality. For a long time the most visible part of optimal transport theory
was the quest for duality results and their use. Indeed, the Kantorovich variational
problem belongs to the theory of linear programming, so it admits a dual variational
result, and this is expressed through the Kantorovich duality: under very general
assumptions,

min
π∈Π(µ0,µ1)

∫∫
c(x, y) π(dx dy) = sup

ψ1−ψ0≤c

{∫
ψ1(y) dµ1(y)−

∫
ψ0(x) dµ0(x)

}
. (22)

In the right-hand side the expression ψ1 − ψ0 ≤ c really means

∀x, y, ψ1(y)− ψ0(x) ≤ c(x, y).

There is an economical interpretation of (22) in terms of economy, prices and profit
(which, incidentally, made this theorem look like heresy to the eyes of ideologists
of communist Russia); then ψ0 and ψ1 should be interpreted as prices, and the
condition is about the difference of values, between the start and the end of the
transport, never exceeding the transport cost.

From there the notion of c-transform arises naturally: if ψ is any function on X0,
define a “dual” function on X1 by the formula

ψc(y) = inf
x∈X0

[
ψ(x) + c(x, y)

]
;

and symetrically, if ψ is any function on X1, the dual function on X0 will be

ψc(x) = sup
y∈X1

[
ψ(y)− c(x, y)

]
.

Then optimization over the price functions and optimization over the transport map
become strongly related issues.

2.4.3. A turn in the theory: characterizing the optimal map. A huge revival of op-
timal transport theory started at the end of the eighties, when three independent
contributions of Mather, Brenier and Cullen showed that optimal transport can
bring great help in other fields such as dynamical systems and partial differential
equations. (It took long before Mather’s contribution was explicitly recast in terms
of optimal transport, even though this makes it crystal clear in retrospect [53].) At
the same time, Brenier and Cullen showed the importance of solving the Monge
problem and understanding the structure of the optimal transport map.
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An emblematic result from that period is Brenier’s theorem (independently ob-
tained by Rachev–Rüschendorf): if c(x, y) = |x − y|2 in Rn and µ0 is absolutely
continuous with respect to Lebesgue measure, then the optimal transport map T is
uniquely defined and characterized by the form

T = ∇ϕ, ϕ a convex function. (23)

The extension to Riemannian manifolds was achieved by McCann at the end of the
nineties: when the cost function is c(x, y) = d(x, y)2 on a Riemannian manifold M ,
then

T = exp(∇ψ), ψ a c-convex function. (24)

Here c-convex means that ψ = (ψc)c, or equivalently that there exists ζ : M →
R ∪ {−∞} such that ψ = ζc, that is

∀x ψ(x) = sup
y

[
c(x, y)− ζ(y)

]
. (25)

This may be thought of as a generalized Legendre transform, adapted to the cost
function.

Here are two important remarks on the notion of c-convexity:
• c-convexity implies semiconvexity, so ψ is just as regular as a convex function;
• any C2-small convex function on a compact Riemannian manifold M is c-convex.

In particular, c-convex functions form a “rich” family.

Another case of importance is when c(x, y) = d(x, y); this was the first cost
considered by Monge, and it was also favored by Kantorovich because it leads to a
simpler duality formula. It is however very tricky to study, and general conclusions
did not appear before the end of the nineties [2, 12, 9, 21]. The main results in the
field give a representation of optimal transport for c = d in a Riemannian manifold:
• the shared mass does not matter, and can be “cancelled out” since it does not

need to move: in fact the transportation problem can be recast as a transshipment
problem, depending only on the difference µ− ν;
• nontrivial transport occurs along geodesic rays, and the direction of transport

is given by a gradient ∇Ψ;
• on each ray one may rearrange the transport in a number of ways, but there is

a distinguished monotone transport.

2.4.4. Further structure. Another important concept which has been associated with
optimal transport since the time of Kantorovich and which has been much revived
recently is that of transport distance. For p ∈ [1,∞) let us define Cp(µ0, µ1) as the
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value of the optimal transport cost between µ0 and µ1 when the cost function is
c(x, y) = d(x, y)p; and

Wp(µ0, µ1) = Cp(µ0, µ1)1/p. (26)

This defines a family of distances on the set of probability measures (with some
subtleties at infinity if the space is noncompact), metrizing the topology of weak
convergence. The denomination of Wasserstein distance has become standard for
these distances, even though it is historically not very accurate. By far the most
important cases are again p = 1 and p = 2. They correspond to the same topology
(if the base space is compact), but to distinct geometries. If the base space is not
compact, there might be some differences; the space of probability measures with
finite p-moment will be denoted by Pp(X ), and may be equipped with the distance
Wp.

Then there is also a notion of transport interpolation, when the base space itself
admits an interpolation, in particular if it is a geodesic space. Let us write It(x, y)
for the geodesic interpolation between x and y at time t ∈ [0, 1] (let us assume
that there is such a recipe, for instance defined almost everywhere); then if π is a
transport plan we may deduce from it an interpolation at the level of measures:

µt = (It)#π, t ∈ [0, 1]. (27)

In the mid-nineties, McCann showed how this procedure could lead to precious
insight in certain geometric properties; following his usage, this is called displacement
interpolation, and was pushed extremely far later.

Both the distance Wp and the displacement interpolation endow the space of
probability measures, say P (X ), with a geometry of its own, which is deduced from
the geometry on X but also contains it, through the identification of x with δx. A
key discovery from the past fifteen years is that relevant information on the geometry
of X can be expressed through geometric properties of P (X ).

2.4.5. Further reference. The existence, uniqueness and regularity of optimal trans-
port, the possibility of interpolation, the underlying partial differential equations:
all this has turned into a huge field in the past two decades. My book [53] was
written to be a reference source on the subject, at a time when it was evolving at
fast speed.

3. Encounter of the third type

The encounter which led to the synthetic theory of Ricci curvature was one of
strong interaction and even hijacking. It modified the geometric picture and, to
some extent, the interpretation of Ricci curvature bounds; and this was done from



14 CÉDRIC VILLANI

the intervention of a theory that seemed very remote. In this section I shall say a
bit more about the way in which this occurred.

3.1. Precursors. At least two precursors can be mentioned. The first one was
McCann’s PhD Thesis [37], studying convexity properties of information-theoretical
functionals in the geometry of optimal transport. A main result, slightly restated,
was that if a convex nonlinearity U is given with U(0) = 0, then the functional

U : µ 7−→
∫
U

(
dµ

dx

)
dx (28)

on P (Rn), is geodesically convex in W2 if and only if

sn U(s−n) is a convex function of s ∈ R+. (29)

Condition (29) is saturated when U(r) = −r1−1/n; McCann showed how this 1/n is
related to the same exponent in the Brunn–Minkowski inequality.

The second precursor, playing a more indirect role, was the discovery by Marton
[36] that comparisons between optimal transport distance Wp and information theo-
retical functionals like Hν provide a powerful way to encode concentration properties.
This field would later be developed by Talagrand and others. One of the neat results
proven by Talagrand is that if γ stands for the normalized Gaussian distribution on
Rn, then

∀µ ∈ P2(Rn), W2(µ, γ) ≤
√

2Hγ(µ). (30)

This “transport-entropy inequality”, called Talagrand inequality, compares two fund-
mental ways to measure the discrepancy between two probability measures. It is
related to the theory of concentration of measure: the right-hand side tells about
the initial spreading of µ in Gaussian space (for instance if µ is the restriction of γ to
a subset C, then the right-hand side depends on the logarithm of the volume of C);
while the left-hand side tells us about the effort needed to “invade” the whole space
if we spread the mass of µ. So this is a functional, “probabilistic” way to express
the basic mantra of measure concentration, namely that if a set is not too small
in probability measure, then its enlargement quickly takes up most of the measure.
Pioneered by Lévy and Dvoretzky, concentration theory has turned into a huge field,
reviewed by Ledoux [30].

3.2. Jordan–Kinderlehrer–Otto. In 1998 Jordan, Kinderlehrer and Otto pub-
lished a paper of considerable importance. This paper was not solving any known
open problem, nor was it technically very difficult; but it was providing a new view
on a well-known object. Cheating a bit, one may summarize its contents in one
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sentence: The gradient flow of the information functional Hν, in the geometry of
W2, is the heat equation. This theorem, stated by the authors in Rn, would later be
proven and reproven in insane generality, all the way to metric spaces in a certain
sense. It would also be adapted to other functionals and distances. Here is a smooth
geometric version that will be sufficient to give a flavor of the result.

Let M be a compact Riemannian manifold and let ν(dx) = e−V (x) vol (dx) be a
reference probability measure on M . Let µ0 be an initial probability measure on

M . Apply the procedure described in Subsection 2.2.1 to define (µ
(τ)
k )k∈N; then µ

(τ)
k

converges in the limit τ → 0, kτ → t, to µ(t), which is the solution, evaluated at
time t, of the natural diffusion equation with equilibrium state ν:

∂µ

∂t
= ∆µt +∇ · (∇V µt).

In the sequel, I shall say “heat equation” for this process even if, from the physical
point of view, it is a drift-diffusion equation.

All of a sudden, with this contribution, optimal transport theory and gradient
flows were related. This unorthodox construction of a heat flow on the space of
measures is now called the JKO scheme and would later prove to be usable in
extreme generality.

3.3. Otto–Villani. In 1998 I heard Otto lecturing on his gradient flows formalism,
and in particular the way to deduce from it a geometric structure on probability
measures; he would later publish this in an important conceptual paper [43]. Shortly
after my encounter with Otto, I happened to be reading a survey article by Ledoux
on concentration theory, which was a precursor of his monograph [30]. It struck me
that there should be a link between these two pieces of mathematics, and it did not
take long to find it. This triggered my paper with Otto [44].

The main results in our manuscript were
(a) the proof of a new theorem in concentration theory: a logarithmic Sobolev in-

equality automatically implies a Talagrand inequality with the same constant. More
precisely, assuming compactness for simplicity, the information-theoretical inequal-
ity

∀µ ∈ P (M), Hν(µ) ≤ Iν(µ)

K
, (31)

where K > 0 is a positive constant, implies the transport-entropy inequality

∀µ ∈ P (M), W2(µ, ν) ≤
√

2Hν(µ)

K
. (32)
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(There are versions for noncompact spaces, and again, this theorem has been gen-
eralized to an amazing degree, even to plain metric spaces [25].)

(b) the proof of a partial converse under certain Ricci curvature conditions; this
was mainly based on the HWI interpolation inequality, which under a CD(0,∞)
condition expresses the domination of Hν by W2 and Iν together.

(c) the formalization of a link between curvature, information theory and optimal
transport, relying mainly on an expansion of the formal Riemannian intuition ex-
posed in [43]. The Riemannian structure of the distance W2 was pointed out, thanks
to a formula which was due to Brenier–Benamou and reinterpreted by Otto:

‖µ̇‖µ = inf

{√∫
|ξ|2 dµ; µ̇+∇ · (µξ) = 0

}
. (33)

(d) the emphasis on the Hamilton–Jacobi equation as the evolution for the poten-
tial driving the geodesics of optimal transport:

∂µ

∂t
+∇ · (µ∇ϕ) = 0,

∂ϕ

∂t
+
|∇ϕ|2

2
= 0. (34)

(e) a conjecture according to which Hν is convex in the geometry of W2 if a Ricci
curvature condition CD(0,∞) holds true for ν.

While the formal setting was there, some technical tools were missing, especially in
relation to the nonsmoothness of optimal transport and the Riemannian formalism.
Much of what was stated there on formal grounds would later be proven and motivate
new developments.

By the way, in my personal bibliography this paper is at the same time one of
those which were easiest to write and quickest to be accepted (Paul Malliavin, who
handled it himself, accepted it the day after it was submitted); but it is also the
most quoted and the one which triggered the largest amount of developments.

3.4. The aftermath. Two papers which were published after [44] deserve partic-
ular notice: Cordero-Erausquin–McCann–Schmuckenschläger [14] and Sturm–Von
Renesse [49]. These contributions
• established certain key technical lemmas (generalization of Alexandrov’s theo-

rem, nonsmooth change of variables formula, estimates on Jacobi fields);
• proved some new geometric inequalities such as the curved Brunn–Minkowski

inequality;
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• showed that CD(K,∞) can be characterized either by properties of uniform
convexity of Hν along optimal transport, or by contraction properties of the heat
equation. Variants were obtained for all CD(K,N) conditions.

With this the scene was ready for the start of the synthetic theory of Ricci
bounds. It would mainly consist in using the properties of certain nonlinear, integral
functionals with respect to the geometry of optimal transport, to define curvature-
dimension conditions without any reference to smoothness; and to derive geometric
consequences thereof.

The transport cost would be the quadratic geodesic distance: c = d2. As for the
nonlinearities to be used, they would belong to specific classes: the displacement
class of dimension N , DCN , is defined as the set of all continuous convex functions
U : R+ → R such that U(0) = 0 and

- for N <∞, U(s−N) sN is convex in s,
- for N =∞, U(e−s) es is convex in s.

So by construction the theory would mix information-theoretical functionals and
optimal transport. Other ingredients that would later be developed along with the
theory include:
• nonsmooth analysis, in particular analysis in metric spaces; this was in line

with research done by the Italian and Nordic schools, as well as Cheeger, Sturm and
others;
• Hamilton–Jacobi equations, in relation with the Hopf–Lax formula, in non-

Euclidean spaces — for the purpose of the theory, basic results were extended from
Euclidean to Riemannian, then to geodesic or even metric spaces;
• localization, which is a way to reduce global geometric inequalities to inequalities

on geodesic lines; it takes its roots in works of Payne–Weinberger, Gromov–Milman,
Kannan–Lovász–Simonovits.

For me, the story was also deeply woven together with my two books on opti-
mal transport, written on the occasion of research courses, in Georgia Tech and in
Saint-Flour respectively. The first one, Topics in Optimal Transportation [51], was
motivated in the first place by the encounter of the four fields described above, and
the desire to give a synthetic overview. It contributed a lot to advertise for it. The
second book, Optimal transport, old and new [53], was triggered by the start of the
synthetic theory of Ricci bounds; this is one of the reasons why it focused much
more on generality and fundamentals of the theory, removing all spurious smooth-
ness assumptions whenever possible. At the same time, it was an attempt (the last,
certainly) of an exhaustive review of a field which was growing explosively. But it
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was also a research project on its own, since a large number of results were rewritten,
proved or improved specifically for this book. Let me mention that I am currently
slowly working on a revision of this monograph, time seeming ripe because, seven
years after its publication, most of the conjectures which were put forward therein
seem to have been settled.

4. Weak curvature-dimension conditions

In 2004, I encountered Lott in Berkeley, and he suggested that we start working
on a synthetic theory of Ricci curvature bounds. At the same time, Sturm was
doing the same in Bonn, independently. The resulting papers [34, 47] founded the
theory, and thus the geometric spaces defined there are often called LSV for Lott–
Sturm–Villani. The precise assumptions vary from paper to paper; some of these
variations are superficial, while other ones may be deeper. In this section I shall
present some of these definitions, focusing for simplicity on compact spaces, even
though the whole theory works at least for locally compact, complete geodesic metric
spaces under appropriate moment conditions (and sometimes even the assumption
of local compactness can be removed). As for the presentation of the definitions, I
shall proceed in an inductive way, from particular to general in some sense.

4.1. Preliminary definitions. Recall that
• the metric derivative |γ̇| of a path γ, valued in a metric space (X , d), is defined

by

|γ̇t| = lim sup
s↓0

d(γ(t), γ(t+ s))

s
;

• the length of a Lipschitz path γ : [0, 1]→ X is defined by

L(γ) =

∫ 1

0

|γ̇t| dt = sup

{
N∑
i=1

d(γ(ti), γ(ti+1)), 0 = t1 < t2 < . . . < tN = 1

}
;

• a Lipschitz path γ : [0, 1]→ X is said to be geodesic if L(γ) = d(γ(0), γ(1));
• a metric space (X , d) is said to be geodesic if any two points in X are joined by

at least one geodesic;
• the length is invariant under time reparameterization, and by default a geodesic

can be assumed to have constant speed;
• a metric measured space (mms) is a metric space equipped with a Borel measure;
• a nonbranching metric space is one in which any two geodesics which coincide

on a nontrivial time interval are in fact equal to each other.
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4.2. Definitions. If a compact metric space (X , d) is given, then the set P (X ) of
Borel probability measures on X , equipped with the topology of weak convergence,
is a compact space. Unless otherwise stated, P (X ) will be further equipped with the
distance W2 derived from the quadratic geodesic transport cost, c(x, y) = d(x, y)2.
Then the resulting metric space P2(X ) is itself a compact geodesic space. All this
can be adapted to noncompact spaces, with just a bit of care.

Definition 1. A compact geodesic metric measured space (X , d, ν) is said to be
weakly CD(0,∞) if any two probability measures µ0, µ1 on X can be joined by a
constant-speed geodesic (µt)0≤t≤1, such that

∀t ∈ [0, 1] Hν(µt) ≤ (1− t)Hν(µ0) + tHν(µ1). (35)

This is the simplest definition. It does not matter if the probability measures
appearing in it are imposed to be absolutely continuous, or if they are allowed to be
singular as well. More importantly, Definition 1 may be reinforced in at least three
ways:
• by replacing the requirement on Hν by a requirement on a more general class

of functionals, namely all functionals Uν with U ∈ DC∞;
• by requiring inequality (35) to hold along all geodesics (µt), rather than juste

one (this is sometimes called “strong displacement convexity property”);
• by requiring the differential convexity inequality (d2/dt2)Hν(µt) ≥ 0 rather than

the integral version (35).

The first extension does not seem to have led to a significantly different theory, so
it is to some extent a matter of taste. The other two extensions should be handled
with more care, in particular because the stability of the resulting definitions is not
granted. However, if the space (X , d) is nonbranching, it can be shown that all
these definitions are equivalent: the nonbranching assumption allows to go back and
forth between the local and global versions of these properties, reducing the integral
inequalities to inequalities on geodesics.

Whichever choice is made, when applied to a compact Riemannian manifold
equipped with its geodesic distance and with a smooth measure ν = e−V (x) vol (dx),
Definition 1 is equivalent to the requirement that (M, ν) satifies the CD(0,∞) cri-
terion. What makes this equivalence possible, following our remarks in Subsection
2.4.3, is

- the possibility of “integrating” the concavity inequality (8);
- the fact that singularities due to nonsmoothness of optimal transport always

“modify inequalities in the right direction”;
- the possibility to “test” all directions of displacement via optimal transport.
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So one can see a parallel between distribution theory and Definition 1: in both sit-
uations, it is about testing a certain property through a certain arbitrary spreading.
In distribution theory this is done by integration against an arbitrary test function;
while in Definition 1 this is done by considering arbitrary measures µ0 and µ1.

Now, how to generalize this to other values of K and N? Let us restrict to values
of N ≥ 1 and forget that N = 1 has certain peculiarities. Handling CD(0, N)
rather than CD(0,∞) is rather straightforward: it is all about replacing Hν by its
“N -dimensional” counterpart

HN,ν(µ) = N

∫
ρ (1− ρ−1/N) dν =

∫
UN(ρ) dν, (36)

where UN(r) = Nr(1 − r−1/N); and replacing, correlatively, the displacement con-
vexity class DC∞ by DCN .

Definition 2. A compact geodesic metric measured space (X , d, ν) is said to be
weakly CD(0, N), N <∞, if any two probability measures µ0, µ1 on X can be joined
by a constant-speed geodesic (µt)0≤t≤1 such that

∀t ∈ [0, 1] HN,ν(µt) ≤ (1− t)HN,ν(µ0) + tHN,ν(µ1). (37)

Again, the various subtleties and equivalences which were discussed above remain
true in this case.

So far there is widespread agreement among experts that the definitions are about
right. The story is more convoluted for nonzero values of K. In the synthetic theory
of sectional curvature, nonzero curvature bounds are handled through comparison
with spheres or hyperbolic planes, and specific coefficients (of sine or hyperbolic
nature) appear. When it comes to the synthetic theory of Ricci curvature, among a
number of attempts, two main approaches have emerged, due to Sturm and Erbar–
Kuwada–Sturm respectively. To present them, I shall focus on the case of positive
curvature, which means positive lower bound; but it can all be adapted to negative
lower bound as well.

(i) A first recipe is to introduce “distorted” information functionals, of the style

Uβ
π,ν(µ) =

∫
X
U

(
ρ(x)

β(x, y)

)
β(x, y) π(dy|x) ν(dx), (38)

where π(dy|x) is the disintegration of π with respect to its x-marginal. Moreover,
β(x, y) > 0 is a distortion coefficient which can be related to volume distortion along
geodesics and can be compared to the distortion in model spaces like N -dimensional
spheres or N -dimensional hyperbolic spaces. Notice the dependence on the coupling
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π and the asymmetric role played by x and y. Accordingly, in the definitions, one
will distinguish between the coupling π and the “reversed” coupling π̌, in which the
variables x and y have been swapped. (π̌ = S#π, S(x, y) = (y, x).)

There are two reasonable choices for the comparison distortion coefficients. One,
obviously, is to use the real distortion coefficients of the model spaces: they can be
defined as the ratio of the actual volume distortion to the corresponding Euclidean
volume distortion, both being measured at time t in an interpolation going from x
to y. A computation yields the values

β
(K,N)
t (x, y) =

(
sin(tα)

t sinα

)N−1

, α =

√
K

N − 1
d(x, y). (39)

In this formula, the repeated occurrence of N − 1 is a consequence of the important
geometrical fact that curvature is not felt in the direction of geodesic motion, but only
in the N − 1 transversal directions. Important as it is, this is a subtle phenomenon,
which is not obvious to capture in computations involving Jacobian determinants or
Bochner formula, and requires to explicitly separate the direction of motion from the
rest. Thus it also makes sense to consider artificial distortion coefficients in which
all N directions would be treated the same. These are

∗
β

(K,N)

t (x, y) =

(
sin(tα)

t sinα

)N
, α =

√
K

N
d(x, y). (40)

Then we may go from CD(0, N) to CD(K,N) by adapting (37) and distort the

functional HN,ν with either β or
∗
β. (I shall write Hβ

N,π,ν as a shorthand of (UN)βπ,ν .)
If X is a smooth manifold, then these two choices are equivalent, which reveals a self-
improvement property of distortion coefficients. In fact, at least in the nonbranching
case, both resulting inequalities are locally equivalent.

As a final comment, please note that special care has to be given to the case N = 1,
which I skip in this overview; and that it all makes sense also for noninteger values of
N , even if this means abandoning the N -dimensional spheres and the interpretation
in terms of N “directions”. (To some extent, it is possible to replace spheres by
their one-dimensional projections on the real line, and then this gives a family of
measure, with a “dimension” parameter N that can easily be varied continuously.)

(ii) Another recipe to handle nonzero values of K is to replace the underlying

convexity differential inequality ḧ ≥ 0 by a more complicated inequality of the form

ḧ+
ḣ2

m
≥ Kσ, t ∈ [0, 1]. (41)
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While inequality (41) is nonlinear, it still satisfies a maximum principle, and thus
can be used in comparison principles. Let us write

ΨK,m
t (ψ0, ψ1, σ) = the solution of (41) at time t, (42)

taking values ψ0 and ψ1 at time 0 and 1 respectively.

Then it turns that we can go from CD(0,∞) to CD(K,N) by replacing the linear
interpolation on the right-hand side of 35 by the nonlinear interpolation defined
by (42). Please note that this uses only the entropy functional Hν , not the finite-
dimensional counterparts HN,ν .

All in all, we end up with three choices for the synthetic CD(K,N); that is,
three different notions of weak CD(K,N) spaces, which will correspond to slightly
different sets of notation.

Definition 3. Let (X , d, ν) be a compact measured geodesic space. It is said to satisfy
CD(K,N), or CD∗(K,N), or CDe(K,N), with N ∈ [1,∞), if, for any µ0, µ1 ∈
P (X ) one can find a constant speed geodesic (µt)0≤t≤1 in (P (X ),W2) such that the
following inequality is satisfied:

• for CD(K,N): HN,ν(µt) ≤ (1− t)Hβ
(K,N)
1−t

N,π̌,ν (µ0) + tH
β
(K,N)
t

N,π,ν (µ1);

• for CD∗(K,N): HN,ν(µt) ≤ (1− t)H
∗
β
(K,N)

1−t
N,π̌,ν (µ0) + tH

∗
β
(K,N)

t
N,π,ν (µ1);

• for CDe(K,N): Hν(µt) ≤ ΨK,N
t

(
Hν(µ0), Hν(µ1),W2(µ0, µ1)2

)
.

Again, if (X , d) is nonbranching, then this inequality may be replaced by the
differential version

d2

dt2
Hν(µt) +

(
d
dt
Hν(µt)

)2

N
≥ KW2(µ0, µ1)2.

Finally, these definitions can be adapted to the case N =∞, and the inequalities
above have to be replaced, respectively,
• for CD(K,∞) or CD∗(K,∞), by

Hν(µt) ≤ (1− t)Hβ
(K,∞)
1−t

π̌,ν (µ0) + tHβ
(K,∞)
t

π,ν (µ1), (43)

where
β

(K,∞)
t (x, y) = e

1
6
K(1−t2)d(x,y)2 ;

• for CDe(K,∞), by

Hν(µt) ≤ (1− t)Hν(µ0) + tHν(µ1)− K t(1− t)
2

W2(µ0, µ1)2. (44)
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The latter inequality, expressing the K-convexity of Hν in the metric W2, had long
been identified as a plausible CD(K,∞) condition [34].

So we have a choice of defining inequalities when K 6= 0. How can we compare
the resulting definitions? Assuming that (X , d) is nonbranching, one can show that
• CD(K,N) is the most demanding: it implies both CD∗(K,N) and CDe(K,N).

It is also the one which naturally leads to sharp dimensional constants.
• CD∗(K,N) implies CD(K∗, N) with K∗ = K(1 − 1/N). This deterioration of

the constant by a factor 1− 1/N is typical.
• CD∗(K,N) is equivalent to CDe(K,N); and CD∗(K,N) is locally equivalent to

CD(K,N).
• CD∗(K,N) can be globalized: that is, if it is true locally (in the neighborhood

of any point) then it also holds true globally.
• It is equivalent to ask that X satisfies CD∗(N − 1, N), or that the metric cone

built over X satisfies CD(0, N + 1). (As the archetypal example, think of the flat
RN+1 as the cone built over SN .)
• CD∗(K,N) also leads to sharp dimensional inequalities such as the sharp version

of Brunn–Minkowski’s inequality; but this is based on more tricky lines of reasonings
such as localization techniques.

All this suggests that the “correct” definition is not CD, but either CD∗ (more
complicated) or CDe (more simple), both being equivalent in a nonbranching con-
text. It remains an open problem whether the weak CD(K,N) property is in fact
equivalent to the weak CD∗(K,N) property, or whether it is a strictly stronger notion
(in which case it should probably be dismissed because of the failure of globalization
property).

4.3. Stability. So much effort has been spent on definitions so far – but finding
the right definition was one of the main goals. I already mentioned that all those
definitions do extend the classical CD(K,N) criterion. But what else can be said of
them?

The first major property is that the various notions of weak CD(K,N) spaces are
all stable under a very weak but very natural notion of convergence of metric-measure
spaces, namely the measured Gromov–Hausdorff topology. It means, roughly speak-
ing, pointwise convergence of distances and weak convergence of measures. Let us
note that this stability property was a well-known open problem even in the case of
smooth manifolds.

Stability is proven easily by taking advantage of two main properties:



24 CÉDRIC VILLANI

• Optimal transport (say with cost c = d2) is stable under Gromov–Hausdorff
convergence; for instance, if X k → X in the Gromov–Hausdorff topology, and (µkt )
is a geodesic path in P2(Xk), for each k, then up to extraction of a subsequence it
converges weakly to a geodesic path (µt) in P2(X ). In fact, the convergence of Xk
to X implies the convergence of P2(Xk) to P2(X ).

• Nonlinear functionals of information type are also stable, and more precisely
lower semicontinuous, under weak convergence of measures, for both the integrand
and the reference measure. In fact, if U is a convex nonlinearity, and (µk)k∈N, (νk)k∈N
are two sequences of probability measures converging weakly to µ and ν respectively,
then

Uν(µ) ≤ lim inf Uνk(µk).

Furthermore, these functionals are also stable under push-forward: if f is any mea-
surable map, then

Uf#ν(f#µ) ≤ Uν(µ).

At least when U(r) = r log r, the latter inequality has clear informational content
(applying a function to a signal can only reduce the amount of information); under
Sanov’s interpretation (of the entropy as a large deviation rate), it coincides with
the “contraction property” which is dear to specialists of large deviations.

4.4. Generality. Let me write here generically CD for either CD, or CD∗, or CDe.
Weak CD(K,N) spaces are strictly more general than classical CD(K,N) spaces; in
particular, they may contain singular limits of CD(K,N) spaces, presenting cone-
type singularities for instance. Such singularities were already well-known in the
context of the synthetic theory of sectional curvature.

But, at a more fundamental level, weak CD(K,N) spaces also encompass geome-
tries which never occur with sectional curvature bounds. Indeed, non-Euclidean
normed spaces all belong to this class; more precisely, Rn, equipped with any norm
and with the n-dimensional Lebesgue measure, defines a weak CD(0, n) space. This
may look innocent but is a major novelty with respect to the sectional approach:
indeed, a normed space satisfies sectional curvature inequalities (one-sided or two-
sided) only if it is a Euclidean space. More generally, weak CD(K,N) spaces can
handle certain classes of Finsler geometries.

This wealth of spaces can be seen as an advantage or as a drawback by geome-
ters. On the one hand, normed spaces have the same isoperimetric inequalities as
Euclidean spaces (with just a bit more generality, this is sometimes called the theory
of Wulff isoperimetry); so it is nice to encompass them in a common setting. On
the other hand, there are some key properties from Riemannian geometry which
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definitely do not hold in normed spaces. A most emblematic one is the splitting
property, which can be stated only for unbounded geometries. Its classical formu-
lation goes like this: if a measured Riemannian manifold satisfies CD(0, N) and
contains an infinite line γ, then it can be factored up into the metric product of γ
with a submanifold of codimension 1, up to isometry of course. While this property
may look rather specific, it plays a crucial role in establishing rectifiability of certain
metric spaces, by splitting off successive R factors from a tangent space obtained by
metric blow-up.

The tension between these two points of view was resolved by the introduction of
an extra condition reinforcing the curvature-dimension conditions. This condition,
introduced by Ambrosio, Gigli and Savaré [5], is denoted with the letter R (for
Riemannian); so it gives rise to weak RCD, RCD∗ or RCDe spaces. It consists in
imposing, on top of the considered curvature condition, the requirement that

W 1,2(X , d) is a Hilbert space. (45)

This extra condition prevents non-Euclidean normed spaces, and, remarkably, nar-
rows the class of CD(K,N) spaces down to what seems to be the right level of
generality for all “genuinely Riemannian” applications. A few remarks are in order.

• The space W 1,2 is the Sobolev space of functions with square-integrable gradient.
It is classically defined in a smooth context by

‖f‖2
W 1,2 = ‖f‖2

L2 + ‖∇f‖2
L2 ;

but here one has to be careful in the generalized definition of ‖∇f‖2
L2 . It should be

understood in the sense devised by Cheeger after a careful study; the construction
goes like this:

- an upper gradient for f is a measurable function g such that for any Lipschitz
curve γ,

f(γ(1))− f(γ(0)) ≤
∫ 1

0

g(γ(s)) |γ̇s| ds.

- for a Lipschitz function f , a distinguished upper gradient is the metric gradient

|Df | = lim sup
y→x

|f(y)− f(x)|
d(x, y)

.

- for an L2 function f , an L2-relaxed gradient is an L2 function which is almost
everywhere bounded below by the weak limit of |Dfn|, where fn is some sequence
converging in the weak L2 sense to f .



26 CÉDRIC VILLANI

- the Cheeger W 1,2 seminorm, ‖Df‖∗, is the L2 norm of the minimal relaxed
gradient (here minimal means in the L2 sense).

- the Cheeger functional is

Ch∗(f) =
1

2
‖Df‖2

∗,

and it allows to define an L2-Sobolev space, whose analysis has been the subject of
an important body of work.

• Requiring the Hilbertian nature of W 1,2 is obviously a weak way to impose the
Euclidean nature of the tangent spaces, so it really has a Riemannian flavor. This
condition is spread all throughout X , so that it does allow for nonsmooth spaces in
which not every tangent cone is a Euclidean space.

• Ambrosio, Gigli and Savaré showed that this “Riemannian” condition can also
be expressed by the linearity of the heat equation. Let us come back to this later.

• This geometric condition on W 1,2 is in spirit a first-order differential condition;
so there is no reason to expect it to be stable in the measured Gromov–Hausdorff
topology. However, when it is combined with a CD(K,N) condition, it turns out to
be stable. The analogy is that a second-order bound makes it possible to pass to
the limit in the first-order conditions. (Similarly, if a sequence of convex functions
converges pointwise, one may pass to the limit in the subdifferential.)

• The RCD spaces seem to answer all criticisms that one may raise against the
large degree of generality of CD spaces; in particular, they do not include normed
spaces besides Euclidean space, and, as a major result by Gigli [24], they do enjoy
a splitting property.

4.5. Heat equation. This story started with a reinterpretation of the heat equation
in terms of optimal transport and information. It also came back into the realm of
the heat equation when this reinterpretation became a way to construct nonsmooth
heat flow with astounding generality. This was apparent in the result of Ambrosio,
Gigli and Savaré [4] showing that in a geodesic space,

• the JKO scheme always converges to a gradient flow solution of the Cheeger
functional;

• under a weak CD(K,∞) bound, there is a unique, well-defined heat flow, which
can be constructed either as the L2 gradient flow of the Cheeger functional or,
equivalently, as the W2 gradient flow of the Boltzmann information Hν .

These results hold under the even weaker abstract conditions that |∇−Hν | (which
under appropriate assumptions is the square root of the Fisher information) is lower
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semicontinuous. But expressing them in terms of lower Ricci curvature bounds,
which even in the smooth case are recognized as the key estimate for a well-defined
heat flow, is extremely satisfactory. At the same time, the authors study the relations
with the alternative evolution variational formulation of the heat equation.

The Ambrosio–Gigli–Savaré theorem is the final accomplishment in a series of
generalizations of the Jordan–Kinderlehrer–Otto results. A key technical lemma in
this field is due to Kuwada [29]: it allows to estimate the speed of variation, in W2

sense, of any gradient flow of the Cheeger functional; its core can be seen as an
estimate on a nonsmooth Hamilton–Jacobi equation.

It should also be noted that the heat flow is in general nonlinear. This is in the
order of things, even for smooth non-Riemannian geometries. Actually, the linearity
of the heat flow is equivalent to the the property that W 1,2 be a Hilbert space.

4.6. Functional inequalities. Ever since McCann’s proof of the Brunn–Minkowski
inequality, the idea to use optimal transport to study or even establish functional
inequalities has gone a long way. Some of the main ideas are to replace volumes
by integral functionals of probability measures, and surfaces by their infinitesimal
derivatives under some evolution. A precursor of this approach was Gromov’s proof
of the classical isoperimetric inequality by using a transport map (in that case, not
the optimal transport one).

For instance, to prove the curved Brunn–Minkowski inequality in a measured
geodesic space (X , d, ν), pick up arbitrary compact sets A0 and A1 with positive
measures, define µ0 as the restriction of ν to A0, µ1 as the restriction of ν to A1,
and study the variations of the functionals HN,ν : under a weak CD(0, N) condition,

HN,ν(µ1/2) ≤ 1

2

(
HN,ν(µ0) +HN,ν(µ1)

)
.

Then the right-hand side is −(ν[A0]1/N + ν[A1]1/N)/2; while the left-hand side can
be compared, through Jensen’s inequality, to −ν[S1/2]1/N , where S1/2 is the support
of µ1/2. Since this support is in turn included in the set of midpoints of A0 and A1,
the desired inequality follows.

This scheme is typical: applying a convexity inequality to well-chosen probability
measures and geodesics in W2 geometry leads to a surprisingly large number of
inequalities. Sometimes this goes also through restriction to a subset of geodesics,
or rescaling, or local study, or blow-up, etc. Semigroup arguments are also popular in
this area, with particular emphasis on the heat flow and Hamilton–Jacobi equations,
in a smooth or nonsmooth setting.
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One of the first results in the study of nonsmooth CD(K,N) spaces was the
doubling property: that is, one can bound the measure of a ball B(x, 2r) by a
constant multiple of the measure of the ball B(x, r). This is captured by the Bishop–
Gromov inequality, stating that the rate of growth of ν[B(x, r)], as a function of r, is
controlled by the rate of growth in the model CD(K,N) space. This result is also a
key to Gromov’s precompactness theorem, according to which the set of CD(K,N)
measured manifolds, with an a priori bound on the diameter, is precompact in the
measured Gromov–Hausdorff topology.

It was much more tricky to nail down the local Poincaré inequality at a satisfactory
level of generality. A metric-measure space (X , d, ν) is said to satisfy a local Poincaré
inequality if, for any Lipschitz function u, any point x0 ∈ X and any radius r > 0,

−
∫

Br(x0)

∣∣∣u(x)− 〈u〉Br(x0)

∣∣∣ dν(x) ≤ Cr −
∫

B2r(x0)

|∇u(x)| dν(x), (46)

where −
∫
B

= (ν[B])−1
∫
B

is the averaged integral over B, and 〈u〉B = −
∫
B
u dν is the

average of the function u on B. Several variants of these inequalities exist: one may
require that the ball on the right-hand side be the same as the ball on the left-hand
side; one may replace the L1 integrals by Lp norms, with possibly different values
of p on both sides; etc. However, all these inequalities are related, and they are one
of the pillars of analysis in metric spaces, as a way to control global variations by
local ones. In the case of CD(K,N) spaces, for some time the proof of the local
Poincaré inequality was relying on a nonnatural nonbranching assumption, until a
surprisingly neat and simple argument was found by Rajala [46] to handle the full
generality.

A further coup de théâtre occurred in the field when Cavalletti and Mondino [10],
introduced the technique of localization in this nonsmooth setting. Localization,
which grew up from works by Payne–Weinberger, Gromov–Milman and Kannan–
Lovász–Simonovits, goes through the reduction of an n-dimensional inequality to a
collection of one-dimensional inequalities holding on geodesic lines. The main idea
is captured by the following decomposition: if a certain function f with zero mean
is given, then one can decompose the space into a part in which f is essentially zero,
and a set of geodesics γ such that the integral of f on each γ is also zero; one can
also disintegrate the measure ν according to this set of geodesics, and thus write
ν =

∫
νγ ν(dγ). Klartag discovered that L1-optimal transport could be used as a

tool to establish this decomposition; and Cavalletti–Mondino showed that this could
be adapted to a nonsmooth setting, using only a nonbranching assumption. It is
very striking that this bit relies on the study of L1-transport (with cost c = d), while
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virtually all other applications in geometry rely on L2-transport (with cost c = d2).

With these tools, an impressive list of functional inequalities could be derived.
Most of them fall in one of the following categories:
• volume control: Brunn–Minkowski, doubling (Bishop–Gromov inequality); and

the functional counterpart of Brunn-Minkowski, the so-called Prékopa–Leindler in-
equalities.
• concentration inequalities, like the Talagrand inequalities.
• isoperimetric and spectral inequalities: Lévy–Gromov isoperimetric inequal-

ity, Sobolev and logarithmic Sobolev inequalities, L2–Poincaré inequalities, local
Poincaré inequalities...
• heat kernel estimates: Li–Yau inequalities and their many variants.

A large part of my book [53] was devoted to presented a synthetic view of all these
inequalities and their links, both in smooth and nonsmooth contexts.

4.7. Summary. Now that more dust has settled, one may argue that the synthetic
theory of Ricci bounds can be developed at three levels of generality, which are all
interesting:

(i) General metric spaces. In this case we have a choice between CD(K,N),
CD∗(K,N) or CDe(K,N) criteria. In such generality, under curvature-dimension
conditions one still has access, with possibly slight variations in the constants, to

- Poincaré inequalities, local and global;
- Sobolev and logarithmic Sobolev inequalities;
- Bishop–Gromov and Brunn–Minkowski inequalities;
- Gromov’s precompactness theorem, as well as various natural metrics on the

space of bounded CD(K,N) spaces (like Sturm’s distance);
- a well-defined heat flow, which is at the same time the L2-gradient flow of the

Cheeger functional, and the W2-gradient flow of the Boltzmann information Hν .

(ii) Nonbranching CD∗(K,N) spaces, or equivalently nonbranching CDe(K,N)
spaces. Examples do include Banach spaces and certain Finsler geometries. Then
in addition we have

- globalization: if the curvature bound holds true locally, then it also holds true
globally, without any degradation of constants;

- sharp dimensional isoperimetric-type inequalities, including sharp versions of the
Brunn–Minkowski, Lévy–Gromov and L2-Sobolev inequalities;

- almost rigidity theorems comparable to those existing in the smooth context.
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While nonbranching might seem sometimes a stringent assumption (not stable
under Gromov–Hausdorff topology), these results remain true if the space is essen-
tially nonbranching, that is, if any optimal transport is concentrated on a set of
nonbranching geodesics.

(iii) RCD∗(K,N) spaces. These spaces are automatically essentially nonbranch-
ing, so this category is strictly stronger than the previous one. It enjoys

- splitting theorem in nonnegative curvature (Gigli);
- a distributional Laplace operator;
- geometric estimates on the heat kernel (Garofalo–Mondino);
- a Bochner formula (Erbar–Kuwada–Sturm); with this, essentially any rele-

vant which is known to hold in the smooth CD(K,N) setting can be extended
to RCD∗(K,N) spaces;

- information-theoretical inequalities of Shannon type (which are probabilistic
analogues of the Brunn–Minkowski inequality, and hold true in nonnegative curva-
ture);

- the possibility to solve the Monge problem, and prove the existence of an optimal
transport, under general conditions (Gigli);

- rectifiability (Mondino–Naber), even though at the moment the dimension of
the tangent space might vary from place to place. This is, in spirit, reminiscent
of the situation for convex functions: a synthetic curvature (second-order) bound
automatically implies a certain regularity.

4.8. Extensions? I already mentioned that Definitions 1 to 3 can be generalized,
without much difficulty, to complete, locally compact, possibly noncompact spaces.

It is more tricky to consider spaces X which are not locally compact, typically
infinite-dimensional. Another related extension is in the direction of length spaces
which are not necessarily geodesic spaces. There does not seem to be a general
theory so far, but some results in those directions are established and considered by
Sturm, Ambrosio and their collaborators. As a typical example, according to Sturm
the Wiener space can be seen as an infinite-dimensional CD(1,∞) space, just as one
would expect or hope.

5. Connection with other theories

It was clear from the start that the theory of synthetic Ricci curvature bounds
is in relation with an array of mathematical theories going way beyond geometry.
But even within geometry, it is worth pointing out a few theories which are strongly
related to our subject here.
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5.1. Alexandrov spaces. One of the first questions which comes to mind is the
relation between the synthetic theory of Ricci curvature bounds and the synthetic
theory of sectional curvature bounds. The latter is defined using comparison of
angles and distances between triangles in the space of interest and in a reference
model space of constant curvature, as in Subsection 2.1.2. The resulting spaces are
called Cartan–Alexandrov–Toponogov spaces, or CAT spaces, or Alexandrov spaces.
There is a theory for upper bounds, and a theory for lower bounds; the corresponding
spaces are sometimes denoted CAT−(κ) (sectional curvature bounded above by κ)
or CAT+(κ) spaces (sectional curvature bounded below by κ), and their properties
are very different; there is also a theory of two-sided curvature bounds, which is
somehow less interesting.

Trees are typical examples of CAT− spaces, which can be very rough; but CAT+

spaces can never be too wild, at least when they have finite dimension, in which
case the dimension n is defined without ambiguity. Decades of works, especially by
the Russian and Japanese schools, have shown how to develop analysis on CAT+

spaces, including local coordinate systems, Laplace operators, gradient flows, etc.
Since classical Ricci curvature is deduced from sectional curvature, sectional cur-

vature bounds are stronger than Ricci curvature bounds. In particular, if an n-
dimensional Riemannian manifold has sectional curvatures bounded below by κ,
then it satisfies the classical CD((n−1)κ, n) criterion. Thus, a satisfactory synthetic
theory of Ricci curvature should keep this implication at the level of nonsmooth sec-
tional curvature bounds: any n-dimensional CAT+(κ) space should also satisfy a
weak CD((n − 1)κ, n) inequality. Note that this link is far from obvious, given the
different formalisms in which CAT spaces (defined with lengths and angles) and
weak CD(K,N) spaces (defined with probability measures) are expressed.

The problem stood wide open until it was solved by Petrunin [45], who gave full
details in the particular case κ = 0. Since then these links have been confirmed:
Alexandrov spaces are automatically RCD∗ spaces.

5.2. Finsler geometries. Finsler geometries are those in which each tangent space
is equipped with a norm that may be non-Euclidean. The resulting diversity of
geometries is very rich, but also confusing – for instance, there are a number of
Finslerian notions of curvature, in contrast with the Riemannian setting where there
is a universally accepted and uniquely defined notion of curvature tensor.

While the notion of synthetic sectional curvature bound is useless in Finsler ge-
ometries, the notion of synthetic Ricci curvature on the other hand can be used in
this field, with interesting results. Under certain assumptions, it coincides with the
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so-called flag curvature. The study of this connection was pioneered by Ohta and
further developed by Sturm and others [40].

5.3. Diffusion equations. Curvature-dimension bounds do not only result in convexity-
type properties of information functionals along geodesics of optimal transport: they
also imply contraction properties along the solutions of the heat equation, or more
generally diffusion equations. The latter equations may be of linear or nonlinear
type, and involve classical heat equation as well as porous medium equations or fast
diffusion equations.

From a geometric perspective, the difference between these two approaches cor-
responds to emphasizing either geodesics or gradient flows, which are the two most
important categories of differential equations. From the point of view of partial
differential equations, it corresponds to emphasizing Hamilton–Jacobi equations or
diffusion equations, which are two fundamental classes of evolutions.

One of the most neat consequences of curvature-dimension bounds, combining all
the fields mentioned in Section 2, is the following contraction estimate: under the
condition CD(K,∞), if any two probability-valued solutions of the heat equation
are given, say (µt)t≥0 and (µ̃t)t≥0, then

W2(µt, µ̃t) ≤ eKtW2(µ0, µ̃0).

In particular, the heat flow is nonexpanding in nonnegative curvature.
There are many variants of this estimate, some of which involve dimensionality

(replacing the heat equation by the fast diffusion equation ∂tρ = ∆ρ1−1/n, for in-
stance). It is also possible to develop a synthetic theory of Ricci curvature based on
them; but this approach is somehow more convoluted, and seems to lead to weaker
results than the approach exposed in Section 4. Furthermore, it only applies to
RCD-type spaces, since these contractivity estimates may fail for Finsler geometries
for instance. Nevertheless, the interplay with optimal transport here has led to a
better understanding of the properties of diffusion flows.

Another related nonlinear diffusion equation which has been used in a geometric
context, with spectacular results, is the Ricci flow, say ∂tg = −2 Ric , where g is
the Riemannian metric. As pointed out by McCann and Topping [38], Ricci flow
can be understood in a synthetic way as the “most economical” evolution equation
which guarantees the nonexpansivity of the heat flow when the metric is allowed to
vary. This was the starting point of a series of contributions reinterpreting Ricci
flow estimates in terms of optimal transport, and put forward mainly by Lott [33]
and Topping [50].
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5.4. Discrete spaces. Discrete mathematics has recently become more fashionable
and richer with the rise of computer science. This can be seen in the development of
discrete probability, discrete stochastic processes, discrete analysis, discrete geome-
try... In this context it is natural to ask whether curvature, playing such a crucial
role in continuous geometry, also has a field of application in a discrete setting.

A priori, curvature is a truly continuous notion; of course, in an analytic approach,
it is always possible to discretize the usual differential formulas for curvature, but
this leads to cumbersome expressions whose use is not very clear. On the other
hand, it is not very difficult to discretize the synthetic formulation of Ricci curvature
bounds, as expressed in Section 4. One may achieve this discretization in a number of
slightly different ways, either through the behavior of information functionals along
approximate geodesic measure-valued paths, or through the contraction properties
of diffusion processes. Among a number of works, one may consult [41], [42], [18]
for this.

As a striking example of result in this direction, one can now give a precise meaning
to the statement that the hypercube {−1, 1}N , equipped with the uniform proba-
bility measure, has (discrete) Ricci curvature equal to K = 1/(2N). This provides
a precise answer to a seemingly absurd question asked by Stroock in a 1998 seminar
in Institut Henri Poincaré: What is the Ricci curvature of the discrete hypercube?

Of course, deriving curvature estimates in this context is not a final goal; the
point is that these bounds may be useful to derive other consequences, expressed
in terms of geometry or probability theory. As an example, together with Ollivier
we established the following Brunn–Minkowski type inequality: if A and B are two
nonempty subsets of {0, 1}N , and M is the set of midpoints of A and B, then

log |M | ≥ 1

2

(
log |A|+ log |B|

)
+
K

8
d(A,B)2.

5.5. MTW curvature. In the first place, one of the main reasons why nonsmooth
analysis made its way in optimal transport theory is the hard reality that optimal
transport is sometimes not smooth: even if the measures µ0 and µ1 enjoy all the
regularity that one could dream of (say C∞ densities with upper and lower bounds),
it may be that optimal transport is plainly discontinuous.

On the other hand, over the past decade, nearly optimal geometric conditions were
discovered, which guarantee the continuity of optimal transport under just upper
and lower bounds on the densities, and the smoothness of optimal transport under
further smoothness estimates on these densities. These conditions were discovered
by Ma, Trudinger and Wang [35] and later studied by a number of authors, including
a key contribution by Loeper [31]. So far they have been expressed only in a smooth
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Riemannian context, and take the form of the nonnegativity of a nonlocal (fourth-
order) curvature tensor, called the MTW curvature. This tensor may also be seen
as the collection of sectional curvatures of a specific metric, which is obtained as the
mixed second-order derivative of the squared distance function.

The resulting curvature condition is tricky and very rigid, in some sense: for
instance, a nearly round ellipsoid will satisfy it, while an elungated ellipsoid will
not satisfy it, and optimal transport on it is sometimes discontinuous. However,
this is the second main direction in which optimal transport has contributed to an
unexpected development in the notion of curvature. Indeed, besides the regularity
of optimal transport, MTW curvature has proven useful in certain developments of
independent interest:
• solving certain problems in theoretical economics;
• providing natural examples and counterexamples for regularity in the theory of

fully nonlinear partial differential equations of Monge–Ampère type;
• yielding new geometric estimates on the shape of the important but elusive cut

locus in Riemannian geometry.

As a striking example about the last topic, the MTW tensor was one of the key
ingredients which allowed Figalli, Rifford and me [19] to prove the following “nearly
round sphere” theorem: if the sphere Sn is equipped with a Riemannian metric
that is nearly round in the C4 topology, then all injectivity domains of the resulting
geometry are strictly convex.

Here, the injectivity domain of a point x is the maximal domain of the exponential
map at x, which is also the open region in the tangent space made of all geodesics
emanating from x and evaluated before cut time. So our theorem shows that a nearly
round sphere, viewed from any point, is strictly convex. The deceiving simplicity of
the statement hides a tricky and indirect proof, and one of the first notable stability
results proven over the past decades for the notoriously unstable cut locus. It is
also, to my knowledge, the first such statement in which positive curvature has a
good effect – negative curvature is good for the study of cut locus, because it rules
out focalization which is the main cause of headache in the business; but positive
curvature leaves plenty of room for focalization.

Let me finally mention that there is, to some extent, a synthetic version of the
MTW condition [52]; it can be understood as a sort of nonlocal reinforcement of the
CAT+(0) condition.
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6. Conclusions, and what next?

A decade after the birth of the synthetic theory of Ricci bounds, the theory now
seems to be ripe. Some of its main results are
• stability results for Ricci curvature bounds under weak notions of convergence

(as noted before, this problem was notoriously open, even for smooth geometries);
• new tools to study limits of Riemannian manifolds, with a view to suggest

alternative approaches to the elaborate tools developed by Cheeger and Colding [13]
on the subject;
• the construction of the heat flow in what is arguably the most general setting

that one could dream of;
• new, robust proofs of certain key theorems in geometry, like the local Poincaré

inequality, or maybe most strikingly (and most dear to me), the Lévy–Gromov
isoperimetric inequality, whose proof used to rely on crazy amounts of regularity;
• important side progress in metric analysis, including a better understanding of

Sobolev spaces, Hamilton–Jacobi equations, and gradient flows;
• new approaches to curvature in non-Riemannian contexts, like discrete spaces

or Finsler geometries.

For sure, the theory is not complete yet, and some problems do remain open. Here
is a short nonexhaustive list:
• Are CD(K,N) and CD∗(K,N) definitions from Subsection 4 equivalent, at least

in a nonbranching setting?
• Are RCD∗(K,N) spaces automatically rectifiable with a well-defined dimension?
• Can one push the theory of weak CD(K,N) spaces to the point where it will

encompass all currently known results about weak limits of CD(K,N) manifolds?
• What about a list of significant examples and counterexamples for branching

spaces?
• Are there interesting weak CD(K,N) spaces which cannot be obtained as limits

of Riemannian manifolds?

While these problems all look difficult and interesting, they also look like refine-
ments in comparison of the fundamental difficulties which were solved during the
past ten years.

Besides, the introduction of optimal transport and information theory in geometry
has led to new points of view, which have already been helpful to study directions of
research and establish conclusions. This added heuristic value was already present
from the beginning in Otto’s study of nonlinear diffusion equations [43]: the gradient
flow interpretation was naturally tuiding him to certain estimates, which would
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have been difficult to guess otherwise. It is also striking to note that one of the
early applications of optimal transport to Riemannian geometry was the discovery
of the curved Brunn–Minkowski inequality, whose shape was not even conjectured
before the question naturally arose through optimal transport. It is also an issue
of interpretation, namely the understanding of the so-called Ricci O’Neil theorem,
which was one of the early motivations of Lott for setting up the program of synthetic
Ricci bounds.

Here are a few other examples that I am aware of, in which optimal transport
acted as a guide to finding a relevant interpretation:
• the method which I developed with Grünewald, Otto and Westdickenberg to

revisit the hydrodynamic limit of particle systems of Ginzburg–Landau type [27];
• new large deviation interpretation of diffusion processes put forward by Peletier

and collaborators in a series of works; among other things, their analysis [1] shows
that the JKO scheme for the heat equation be interpreted in statistical terms, with
Boltzmann’s entropy arising from Sanov’s theorem and the square distance being
related to the log central limit theorem;
• the new unconditional estimates of Funano [23] for spectral values of −∆ in

nonnegative Ricci curvature, showing that successive eigenvalues λk satisfy λk/λ1 ≤
Ck for some universal C > 0 (since then the dependence on k has been tremendously
improved, but the first idea for such a universal result came from optimal transport
interpretation);
• the general theorems of stability of diffusion equations by Ambrosio–Savaré–

Zambotti[6];
• the already mentioned works [33, 50], reinterpreting some of the Ricci flow

theory, including some portions of Perelman’s proof of the Poincaré conjecture, in
terms of optimal transport.

This last topic naturally leads to the question of constructing a synthetic notion of
Ricci flow. One motivation for this would be to define a Ricci flow on a nonsmooth
space such as an Alexandrov space, and thus enrich the toolbox of geometrical
analysis in this context. A different motivation would be to deal with the singularities
naturally developed by the Ricci flow even in a smooth setting, thus avoiding the
surgery procedure which has been used to get rid of these singularities.

Another direction of research which has gained vitality in the past decade is the
study of the geometry of the Wasserstein space P2: Besides the fact that it is a
geodesic space, does it support a truly differentiable structure in some sense? a
differential calculus? a parallel transport? a Riemannian calculus? an algebraic
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topology? an infinite-dimensional canonical reference measure? a curvature op-
erator? a heat equation? a Laplace operator? a Hamilton–Jacobi equation? a
Brownian motion, which would provide a canonical notion of stochastically evolving
probability measure? All these issues have been studied, sometimes informally and
sometimes rigorously, over the past years. Some of the best contributions in the field
have been done by Sturm, Gangbo and their collaborators. To quote just one strik-
ing result, Sturm constructed a beautiful “entropic measure” [48] whose definition
looks rather fundamental, and at same time quite difficult to use.

A related problem which has been a source of wonder ever since the time of
the encounter of optimal transport with gradient flows, is whether one can define
Hamiltonian flows in optimal transport structure, and what can be gained from
that insight. Natural candidates are known: Vlasov equation, 2-dimensional incom-
pressible Euler equation in vorticity formulation, semigeostrophic equations... But
issues of existence, well-posedness and asymptotic behavior turn out to be way more
tricky, and simultaneously much more demanding in terms of smoothness, for these
would-be Hamiltonian flows than for gradient flows. Accordingly, constructions and
results are more indirect and partial.

Finally, let me say that I would not take bets about the most dynamic directions
of research to come. As I was writing my first book on the subject, Topics in
Optimal Transportation, I had the vague feeling that the theory was rounding up and
approaching a reasonable state of coherence. But this was followed by an explosion
of results which took me by surprise. As I was writing my second book, I was more
lucid, and realizing that the theory was bound to continue to blow up, but still, the
speed at which this occurred left me amazed – only seven years later, if I wanted
to write now a comprehensive book with the same amount of detail as Optimal
transport, old and new, it should be roughly be twice as thick. Thus I don’t think
I take much risk by adapting to this context Poincaré’s prediction that surprising
results shall be obtained.
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tions. Birkhäuser Boston Inc., Boston, MA, 1992. Translated from the second
Portuguese edition by Francis Flaherty.

[17] Erbar, M., Kuwada, K., and Sturm, K.-T. On the equivalence
of the entropic curvature-dimension condition and Bochner’s inequality
on metric measure spaces. Invent. Math., Published online, Dec 2014.
http://dx.doi.org/10.1007/s00222-014-0563-7

[18] Erbar, M., and Maas, J. Ricci curvature of finite Markov chains via
convexity of the entropy. Arch. Ration. Mech. Anal. 206, 3 (2012), 997–1038.

[19] Figalli, A., Rifford, L., and Villani, C. Nearly round spheres look
convex. Amer. J. Math. 134 (2012), 109–139.

[20] Gallot, S., Hulin, D., and Lafontaine, J. Riemannian geometry, sec-
ond ed. Universitext. Springer-Verlag, Berlin, 1990.

[21] Evans, L. C. and Gangbo, W. Differential equations methods for the
Monge–Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137,
no. 653, 1999.

[22] Figalli, A., Kim, Y.H., and McCann, R.J. When is multidimensional
screening a convex program? J. of Economic Theory 146, 2 (2011), 454–478.

[23] Funano, K. Eigenvalues of Laplacian and multi-way isoperimetric con-
stants on weighted Riemannian manifolds. Preprint, 2014. Available online
at https://sites.google.com/site/keifunanoshomepage/

[24] Gigli, N. The splitting theorem in non-smooth context. Preprint, 2013.
Available online at arXiv:1302.5555v1 An overview of this paper is also
available on the author’s Web page.

[25] Gozlan, N. A characterization of dimension free concentration inequalities.
Annals of Probability 37, 6 (2009), 2480–2498.

[26] Gromov, M. Sign and geometric meaning of curvature. Rend. Sem. Mat.
Fis. Milano 61 (1991), 9–123 (1994).

[27] Grunewald, N., Otto, F., Villani, C., and Westdickenberg, M. A
two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic
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